Bivariate censoring models with covariates

Noël Veraverbeke

Center for Statistics, University of Hasselt, Belgium North-West University, Potchefstroom, South Africa

noel. veraverbeke@uhasselt.be

In this talk we consider a pair (T_1, T_2) of survival times, subject to right random censoring and in the present of a covariate random variable X. We assume that (T_1, T_2) and the censoring time(s) are conditionally independent, given X. The goal is nonparametric estimation of the joint conditional survival function S_x (t_1 , t_2) =P ($T_1 > t_1$, $T_2 > t_2$ I X=x).

Our starting point is the inverse probability weighting idea. This is of course a challenging problem due to the presence of the unknown joint conditional censoring distribution. We there for restrict to two important specific censoring schemes: univariate censoring (only one censoring variable for (T_1, T_2) and one-component censoring $(T_1 \text{ fully observed and } T_2 \text{ subject to censoring})$. Our estimators involve Nadaraya-Watson weights that smooth over the values of the covariate X. We prove asymptotic normality of the joint conditional survival function estimators in the above cases.

Key words: bivariate survival, censoring, covariates, nonparametric estimation